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Abstract. The paper contains applications of variational analysis to the study of Pareto optimality in
nonconvex economies with infinite-dimensional commodity spaces satisfying the Asplund property.
Our basic tool is a certain extremal principle that provides necessary conditions for set extremality
and can be treated as a variational extension of the classical convex separation principle to systems
of nonconvex sets. In this way we obtain new versions of the generalized second welfare theorem for
nonconvex economies in terms of appropriate normal cones of variational analysis.
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1. Introduction

The primary goal of this paper is to study general concepts of Pareto optimality
in nonconvex models of welfare economics with infinite-dimensional commodity
spaces. To obtain new results in this direction, we employ powerful tools of modern
variational analysis dealing with nonsmooth and nonconvex structures.

The classical Walrasian equilibrium model of welfare economics and its various
generalizations have long been recognized as important part of the economic theory
and applications. It has been well understood that the concept of Pareto optimality
(efficiency) and its variants play a crucial role for the study of equilibria and making
the best decisions for competitive economies.

A classical approach to the study of Pareto optimality in economic models with
smooth data consists of reducing it to conventional problems of mathematical
programming and using first-order necessary optimality conditions that involve
Lagrange multipliers. In this way important results were obtained at the late 1930s
and in the 1940s when it was shown that the marginal rates of substitution for con-
sumption and production are equal to each other at any Pareto optimal allocation of
resources; see Lange (1942), Samuelson (1947) and Khan (1999) for more details,
references, and discussions.

� Research was partly supported by the National Science Foundation under grants DMS-9704751
and DMS-0072179 and also by the Distinguished Faculty Fellowship at Wayne State University.
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In the beginning of the 1950s, Arrow (1951) and Debreu (1951) made the next
crucial step in the theory of welfare economics considering economic models with
possibly nonsmooth but convex data. Based on the classical separation theorems
for convex sets, they and their followers developed a nice theory that, in particu-
lar, contains necessary and sufficient conditions for Pareto optimal allocations and
shows that each of such allocations leads to an equilibrium in convex economics.
A key result of this theory is the so-called second fundamental theorem of wel-
fare economics stated that any Pareto optimal allocation can be associated with a
nonzero price vector at which each consumer minimizes his/her expenditure and
each firm maximizes its profit; see Debreu (1959). The full statement of this result
is due to convexity, which is crucial in the Arrow–Debreu model. Note that the
Arrow–Debreu economic theory and related mathematical results have played a
fundamental role in developing the general theory of convex analysis that is mainly
based on convex separation.

However, the relevance of convexity assumptions is often doubtful for many im-
portant applications. In particular, these assumptions do not hold in the presence of
increasing returns to scale in the production sector, which is widely recognized in
the economic literature. In the pioneering study of Guesnerie (1975), a generalized
version of the second welfare theorem was established in the form of first-order ne-
cessary conditions for Pareto optimal allocations in nonconvex economies. Instead
of postulating convexity of the initial production and preference sets, Guesnerie
assumed the convexity of their local tangent approximations and then employed
the classical separation theorem for convex cones. He formalized this procedure by
using the ‘cone of interior displacements’ developed by Dubovitskii and Milyutin
(1965) in the general optimization theory.

Guesnerie’s approach to the study of Pareto optimality in nonconvex econom-
ies was extended in many publications, for both finite-dimensional and infinite-
dimensional commodity spaces; see, e.g., Bonnisseau and Cornet (1988), Khan and
Vohra (1988), and their references. Most of these publications employ the tangent
cone of Clarke (1983) that has an advantage of being automatically convex and
hence can be treated by using the classical convex separation. In this way, marginal
prices are formalized in terms of the dual Clarke normal cone which, however, may
be too big for satisfactory results in nonconvex models as clearly demonstrated in
Khan (1999).

In the latter paper (its first variant appeared as a preprint of 1987), Khan ob-
tained a more adequate version of the generalized second welfare theorem for
nonconvex economies with finite-dimensional commodity spaces. In his version,
marginal prices are formalized through the non-convex normal cone of Morduk-
hovich (1976) that is always contained in Clarke’s normal cone and may be signi-
ficantly smaller in typical nonconvex settings. Note that Khan’s approach does not
involve any convex separation but employs instead a reduction to necessary optim-
ality conditions in nonsmooth programming obtained in Mordukhovich (1980). In
Cornet (1990), similar results were derived for somewhat different economic mod-
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els by using a direct proof of necessary optimality conditions for the corresponding
maximization problems.

In this paper we develop an approach to the study of Pareto optimality in non-
convex economic models that can be viewed as a unification of both the previous
approaches discussed above, which are based, respectively, on the reduction to
mathematical programming and on the usage of convex separation theorems. The
approach of this paper relies on the so-called extremal principle in variational ana-
lysis that provides necessary conditions for locally extremal points of systems of
closed sets and reduces to the classical separation in the case of convexity. Thus, the
extremal principle can be treated as a variational extension of the convex separation
to the general nonconvex setting. It goes back to the beginning of dual-spaced
methods in nonsmooth variational analysis and plays a fundamental role in many
aspects of optimization, optimal control, nonconvex calculus, ets.; see the book
of Mordukhovich (1988) and the recent study in Mordukhovich (2000a) for more
details, discussions, and references.

Based on the extremal principle, we obtain new versions of the generalized
second welfare theorem in nonconvex economies with infinite-dimensional com-
modity spaces. First we establish an approximate form of necessary optimality
conditions for Pareto and weak Pareto optimal allocations that ensure the existence
of approximate marginal prices under general net demand constraint qualifications
developing the qualification conditions of Cornet (1986) and Jofré and Rivera
(2000). In this result, marginal prices are formalized in terms of Fréchet-like nor-
mals at ε-optimal allocations. Then imposing mild sequential normal compactness
requirements, we pass to the limit in the approximate conditions and derive an
exact form of the generalized second welfare theorem in terms of our basic limiting
normal cone in Asplund spaces that provides an adequate description of common
marginal prices for all the preference, production, and net demand constraint sets
at Pareto optimal allocations. In the case of ordered commodity spaces, we justify
natural conditions for the marginal price positivity. The results obtained bring some
new information even in the case of convex economies, since we do not impose
either the classical interiority condition or the properness condition of Mas-Colell
(1985) (we actually do not need a lattice structure of ordered commodity spaces).
On the other hand, our methods and results are not suitable for linear topolo-
gical spaces that are well covered by the conventional approaches in the convex
economic theory.

Note that the usage of Fréchet-like normals in the framework of Asplund spaces
allow us to obtain sharper marginal prices and other consequences in comparison
with similar results in terms of abstract normals and subgradients developed in
Jofré (2000) and Mordukhovich (2000b), where nonconvex separation properties
are employed in general Banach spaces. The reader can find more details and
discussions in Section 4, where the results obtained compare with classical and
recent achievements in this area.
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The rest of the paper is organized as follows. In Section 2 we formulate a general
model of welfare economics and discuss the basic qualification conditions needed
in what follows. Section 3 is devoted to the tools of variational analysis including
the extremal principle. Section 4 contains the main results of the paper on necessary
conditions for Pareto optimal allocations in nonconvex economies.

Throughout the paper we use standard notation. Let us mention that B and B∗
stand, respectively, for the unit closed balls of the Banach space in question and its
dual, cl∗ signifies the weak-star topological closure in dual spaces, and

Lim sup
x→x̄

F (x) := {x∗ ∈ X∗|∃ sequences xk → x̄, x∗
k

w∗→ x∗

with x∗
k ∈ F(xk), k ∈ {N}

denotes the sequential Painlevé-Kuratowski upper limit for multifunctions F :
X ⇒ X∗ with respect to the norm topology in X and the weak-star topology in
X∗.

2. The Basic Economic Model and Qualification Conditions

In this section we describe a general nonconvex model E of welfare economics
considered in this paper and discuss net demand qualification conditions important
in the subsequent study of Pareto optimal allocations.

Let E be a normed commodity space of the economy E that involves n con-
sumers with consumption sets Ci ⊂ E, i = 1, . . . , n, and m firms with production
sets Sj ⊂ E, j = 1, . . . , m. Each consumer has a preference set Pi(x) that
consists of elements in Ci preferred to xi by this consumer at the consumption
plan x = (x1, . . . , xn) ∈ C1 × · · · ×Cn. So the preference relation in E is given by
n general set-valued mappings Pi : c − 1 × · · · × Cn ⇒ Ci without preordering,
utility functions, and conventional assumptions of the classical welfare economics;
see, e.g., Debreu (1959). By definition we have xi �∈ Pi(x) for each i = 1, . . . , n,
and our underlying assumptions is that at least one consumer is nonsatiated, i.e.,
Pi(x) �= ∅.

Let W ⊂ E be a given nonempty subset of the commodity space called the net
demand constraint set. This set defines market constraints on feasible allocations
of the economy E .

DEFINITION 2.1. Let x = (xi) = (x1, . . . , xn) and y = (yj ) = (y1, . . . , ym).
We say that (x, y) ∈ ∏n

i=1 Ci × ∏m
j=1 Sj is a feasible allocation of E if

n∑
i=1

xi −
m∑

j=1

yj ∈ W. (2.1)

Note that W can be formally treated as an additional production set. However,
introducing the net constraint set allows us to unify some conventional situations in
economic models and to give a useful economic insight in the general framework.



PARETO OPTIMALITY IN NONCONVEX ECONOMIES 327

Indeed, in the classical case the set W consists of one element {ω}, where ω is
an aggregate endowment of scarce resources. Then constraint (2.1) reduces to the
‘markets clear’ condition. Another conventional framework appears in (2.1) when
the commodity space E is ordered by a closed positive cone E+ and W := ω−E+,
which corresponds to the ‘implicit free disposal’ of commodities. Generally (2.1)
describes a natural situation that may particularly happen when the initial aggregate
endowment is not exactly known due to, e.g., incomplete information. In the latter
general case, the set W reflects some uncertainty in the economic model under
consideration.

In this paper we consider in parallel the following two notions of Pareto optimal
allocations for the economic model E with the general market constraints (2.1).
These abstract notions of Pareto optimality from Definition 2.2 to locally extremal
points of some system of closed sets and then to apply the extremal principle of
variational analysis that can be viewed as an extension of the classical convex
separation results to the case of nonconvex sets; see Section 3. For the economic
model under consideration, such a reduction becomes possible under certain qual-
ification conditions imposed on preference, production, and net demand constraint
sets. The following qualification conditions, required respectively for weak Pareto
and Pareto optimal allocations in our economic model with general net demand
constraints, are in the line of the ‘desirability direction condition’ of Mas-Colell
(1986) and the ‘condition (�)’ of Cornet (1986) used also in Khan (1999) under
the name of ‘Cornet’s constraint qualification’.

DEFINITION 2.2. Let (x̄, ȳ) be a feasible allocation of the economy E with the
property x̄i ∈ clPi(x̄) for all i = 1, . . . , n. We say that:

(i) (x̄, ȳ) is a weak Pareto optimal allocation of E if there is no feasible alloca-
tion (x, y) such that xi ∈ Pi(x̄) for all i = 1, . . . , n.

(ii) (x̄, ȳ) is a Pareto optimal allocation of E if there is no feasible allocation
(x, y) such that xi ∈ clPi ∗ x̄) for all i = 1, . . . , n and xi ∈ Pi(x̄) for at least one
i.

Similarly we define Pareto and weak Pareto local optimal allocations when feas-
ible allocations in Definition 2.2 are restricted by some neighborhood O of (x̄, ȳ).
Note that Pareto optimal allocations may be different from their weak counterparts
only if n > 1.

The principal objective of this paper is to obtain necessary optimality conditions
for Pareto and weak Pareto local optimal allocations of the economy E . To furnish
this, we are going to reduce the generalized notions of Pareto optimality from
Definition 2.2 to locally extremal points of some system of closed sets and then
to apply the extremal principle of variational analysis that can be viewed as an ex-
tension of the classical convex separation results to the case of nonconvex sets; see
Section 3. For the economic model under consideration, such a reduction becomes
possible under certain qualification conditions imposed on preference, production,
and net demand constraint sets. The following qualification conditions, required
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respectively for weak Pareto and Pareto optimal allocations in our economic model
with general net demand constraints, are in the line of the ‘desirability direction
condition’ of Mas-Colell (1986) and the ‘condition (�)’ of Cornet (1986) used
also in Khan (1999) under the name of ‘Cornet’s constraint qualification’.

DEFINITION 2.3. Let (x̄, ȳ) be a feasible allocation of E and let

ω̄ :=
n∑

i=1

x̄i −
m∑

j=1

ȳj . (2.2)

Given ε > 0, we consider the set

�ε :=
n∑

i=1

clPi(x̄) ∩ (x̄i + εB) −
m∑

j=1

clSj ∩ (ȳj + εB) − clW ∩ (w̄ + εB)

(2.3)

and say that:
(i) The net demand weak qualification (NDWQ) condition holds at (x̄, ȳ) if there

are ε > 0 and a sequence {ek} ⊂ E with ek → 0 as k → ∞ such that

�ε + ek ⊂
n∑

i=1

Pi(x̄) −
m∑

j=1

Sj − W (2.4)

for all k ∈ N sufficiently large.
(ii) The net demand qualification (NDQ) condition holds at (x̄, ȳ) if there are

ε > 0, a sequence {ek} ⊂ X with ek → 0 as k → ∞, and a consumer index
i0 ∈ {1, . . . , n} such that

�ε + ek ⊂ Pi0(x̄) +
∑
i �=i0

clPi(x̄) −
m∑

j=1

Sj − W (2.5)

for all k ∈ N sufficiently large.

Obviously the NDWQ condition implies the NDQ one, but the opposite is not
true. When W = {ω} (the markets clear) and all the production sets Sj are locally
closed, the NDQ condition reduces to the ‘asymptotically included condition’ of
Jofré and Rivera (2000), which directly implies (2.5) in the general case under
consideration. So the sufficient conditions for the latter property presented in Jofré
(2000) and Jofré and Rivera (2000) as well as those for Cornet’s constraint quali-
fication presented in Cornet (1986) and Khan (1999) in finite dimensions, ensure
the validity of the net demand qualification condition (2.5). Note that Cornet’s
constraint qualification corresponds to (2.5) with no set W , where ek is replaced
with te for some e ∈ E and all t > 0 sufficiently small. The latter property holds,
in particular, if either one among preference or production sets is epi-Lipschitzian
at the corresponding point in the sense of Rockafellar (1980).
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Recall that a subset � ⊂ X of a normed space X is epi-Lipschitzian at x̄ ∈ cl�
if there are a vector v ∈ X and a number γ > 0 such that

x + t (v + γB) ⊂ � for all x ∈ (x̄ + γB) ∩ � and t ∈ (0, γ ). (2.6)

When v = 0, property (2.6) is obviously equivalent to x̄ ∈ int�. If v �= 0 and �

is closed, the epi-Lipschitzian property means that � is locally homeomorphic to
the epigraph of a Lipschitz continuous function; hence the terminology. Note that
the epi-Lipschitzian property of � at x̄ implies this property of the closure cl� at
the same point, but not vice versa. It is worth mentioning that summation of sets
as in (2.8) and (2.9) below (especially for a large number of sets) tends to improve
properties related to nonempty interior, and that the epi-Lipschitzian property of
sets falls into this category. If � is closed and convex, this property reduces to
int� �= ∅. For general closed sets in finite dimensions, the epi-Lipschitzian prop-
erty is equivalent to the nonempty interior of the Clarke tangent cone to � at x̄; see
Rockafellar (1980) for more details.

The next proposition presents some sufficient conditions for the NDWQ and
NDQ properties and particularly demonstrates the difference between the assump-
tions needed for these properties.

PROPOSITION 2.4. Let E be a normed space and let (x̄, ȳ) be a feasible alloca-
tion of the economy E . The following assertions hold:

(i) Assume that the sets Sj , j = 1, . . . , m, and W are closed near the points
ȳj and w̄ respectively. Then the NDQ condition is satisfied at (x̄, ȳ) if there are
a number ε > 0, an index i ∈ {1, . . . , n} and a desirability sequence {eik} ⊂
E, eik → 0 as k → ∞, such that

clPi(x̄) ∩ (x̄i + εB) + eik ⊂ Pi(x̄) for all large k ∈ N. (2.7)

Moreover, the NDQ condition is satisfied at (x̄, ȳ) if a desirability sequence {vik}
exists for each i ∈ {1, . . . , n} with some ε > 0 in (2.7).

(ii) Assume that x̄iclPi(x̄) for all i = 1, . . . , n. Then the NDWQ condition is
satisfied at (x̄, ȳ) if the set

� :=
n∑

i=1

Pi(x̄) −
m∑

j=1

Sj − W (2.8)

is epi-Lipschitzian at 0 ∈ cl�. It happens when either one among the sets Pi(x̄) for
i = 1, . . . , n, Sj for j = 1, . . . , m, and W or some of their partial combinations
in (2.8) is epi-Lipschitzian at the corresponding point.

(iii) Assume that n > 1. The NDQ condition is satisfied at (x̄, ȳ) if there is a
nonsatiated consumer i0 ∈ {1, . . . , n} such that the set

! :=
∑
i �=i0

clPi(x̄) (2.9)
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is epi-Lipschitzian at the point
∑

i �=i0
x̄i . It happens when either one among the sets

clPi(x̄) for i ∈ {1, . . . , n}\{i0} or some of their partial sums is epi-Lipschitzian at
the corresponding point.

Proof. Both statements in (i) follow immediately from the definitions and the
assumptions made. Note that (2.7) is a direct generalization of the desirability dir-
ection condition in Mas-Colell (1986); it is related to the classical ‘more is better’
assumption for convex economies with commodity spaces ordered by their closed
positive cones having nonempty interiors.

Let us prove (ii). Due to the structure of (2.4), it is sufficient to consider the case
when the aggregate set � in (2.8) is epi-Lipschitzian at the origin. Using (2.6) in
the Banach space E, we find v ∈ E and γ > 0 such that

� ∩ (γ B) + t (v + γB) ⊂ � for all t ∈ (0, γ ). (2.10)

Picking an arbitrary sequence tk ↓ 0 as k → ∞, we put

ek := tkv, k ∈ N, and ε := γ /(n + m + 2) (2.11)

and show that the NDWQ condition (2.4) holds with ek and ε in (2.11). To furnish
this, we take any zε ∈ �ε and conclude, by (2.3) and (2.2), that zε ∈ (n+m+1)εB.
Due to the structure of the sets �ε in (2.3) and � in (2.8), we find a sequence of
elements zk ∈ � converging to zε as k → ∞. Obviously

zk ∈ (n + m + 2)εB = γB for large k ∈ N (2.12)

due to the choice of ε in (2.11). We can also select zk so that

zε − zk ∈ (tkγ )B for large k ∈ N. (2.13)

Now combining (2.10)–(2.13), we get

zε + ek = zk + tkv + (zε − zk)

∈ � ∩ (γ B) + tk(v + γB) ⊂ �,

which implies (2.4).
It remains to prove (iii) considering the case when the set ! in (2.9) is epi-

Lipschitzian at the reference point. Using this property, we find v ∈ E and γ > 0
such that

∑
i �=i0

clPi(x̄) ∩

∑

i �=i0

x̄i + γB


 + t (v + γB) ⊂

∑
i �=i0

clPi(x̄). (2.14)

Now select vk and ε as in (2.11) and proceed similarly to the above proof of (ii).
Take zε ∈ �ε with

zε =
n∑

i=1

xi −
m∑

j=1

yj − w, xi ∈ clPi(x̄), yj ∈ clSj ,w ∈ clW,
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and approximate xi0 , yj , and w by sequences of elements from the corresponding
sets Pi0(x̄), Sj , and W . In contrast to the proof of (ii), we do not approximate xi for
i �= i0. In this way we derive the net demand qualification condition (2.5) from the
epi-Lipschitzian property (2.14) and complete the proof of (iii). �

It is important to observe that we do not need to impose any assumption on
preference and production sets for the fulfillment of both qualification conditions
in Definition 2.3 if the net demand constraint set W is epi-Lipschitzian at the point
w̄ in (2.2). This follows from Proposition 2.4(ii). It happens, in particular, when E

is ordered and W = ω − E+ with intE+ �= ∅, which is the classical case of ‘free-
disposal Pareto optimum.’ Note also that the material of this section holds, with
minor modifications, in general linear topological spaces equipped with a locally
convex Hausdorff topology.

3. Normal Cones and the Extremal Principle

In this section we present the basic tools of variational analysis used in the paper
for studying Pareto optimal allocations of the nonconvex economy E from Section
2. Our main results are obtained in Section 4 in terms of generalized normals to
nonconvex sets. Let us start with the description of the basic normal constructions
in Banach spaces used in the sequel.

DEFINITION 3.1. Let � be a nonempty subset of a Banach space X and let ε � 0.
(i) Given x ∈ �, we define the set of ε-normals to � at x by

N̂ε(x;�) :=
{
x∗ ∈ X∗

∣∣∣∣ lim sup
u
�→x

〈x∗, u − x〉
‖u − x‖ � ε

}
, (3.1)

where u→� x means that u → x with u ∈ �. When ε = 0, the set (3.1) is a cone
called the prenormal cone or the Fréchet normal cone to � at x and denoted by
N̂(x;�). If x �∈ �, we put N̂ε(x;�) := ∅ for all ε � 0.

(ii) The conic set

N(x̄;�) := Lim sup
x→x̄,ε↓0

N̂ε(x;�) (3.2)

is called the (basic) normal cone to � at x̄.
In the finite-dimensional case X = R

n, the basic normal cone (3.2) coincides
with the one introduced in Mordukhovich (1976) by

N(x̄;�) = Lim sup
x→x̄

[cone(x − &(x;�))], (3.3)

where ‘cone’ stands for the conic hull of a set and &(x;�) is the multivalued
Euclidean projector of x on the closure of �.
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The set of ε-normals (3.1) and the extension (3.2) of the basic normal cone to
Banach spaces first appeared in Kruger and Mordukhovich (1980). Observe that
although the set (3.1) is always nonconvex for every ε � 0, the basic normal cone
may be nonconvex in common situations, e.g., for � = gph|x| at x̄ = (0, 0) ∈ R

2,
This means that it cannot be dual to any tangent cone approximation of � at the
point in question.

Let us mention that for X = R
n the dual/polar cone to N̂(x̄;�) coincides to the

classical Bouligand-Severi contingent cone, while the convex closure of N(x̄;�)

agrees with the normal cone of Clarke (1983). Despite its nonconvexity, the ba-
sic normal cone in finite dimensions enjoys a number of nice properties some of
which may be spoiled by the convexification procedure; see the books of Morduk-
hovich (1988) and Rockafellar and Wets (1998) for more details, discussions, and
references.

In the case of infinite dimensions, most of these properties hold true under
natural assumptions for a broad subclass of Banach spaces, called Asplund spaces,
on which every continuous convex functions is generically Fréchet differentiable.
By now this class is well investigated in the geometric theory of Banach spaces,
where many useful properties and characterizations of Asplund spaces have been
obtained; see, e.g., the book of Phelps (1993) and its references. In particular,
Asplund spaces are characterized as those for which every separable subspace
has a separable dual, and they include Banach spaces with Fréchet differentiable
renorms or bump functions (hence, all reflexive spaces). On the other hand, there
are Asplund spaces that fail to have even a Gâteaux differentiable renorm.

If � ⊂ X is a convex subset of a Banach space X, then both prenormal and
normal cones in Definition 3.1 reduce to the normal cone of convex analysis:

N(x̄;�) = N̂(x̄;�) = {x∗ ∈ X∗|〈x∗, x − x̄〉 � 0 ∀x ∈ �} (3.4)

Moreover, for convex sets one has

N̂ε(x̄;�) = N̂(x̄;�) + εB∗ = {x∗ ∈ X∗|〈x∗, x − x̄〉 � ε‖x − x̄‖ ∀x ∈ �}.
(3.5)

If � is an arbitrary closed subset of an Asplund space X, then there is the exact
relationship between the prenormal and normal cones proved in Mordukhovich and
Shao (1996b):

N(x̄;�) = Lim sup
x→x̄

N̂(x;�). (3.6)

It is also shown in the latter paper that the weak-star topological closure
cl∗N(x̄;�) of (3.2) gives the ‘approximate’ G-normal cone of Ioffe (1989) while
the weak-star closure of its convexification cl∗coN(x̄;�) coincides with Clarke’s
normal cone for any closed sets in Asplund spaces. Note that our basic sequential
normal cone (3.2) may be strictly smaller than the G-normal cone (and its ‘nucleus’
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called the ‘approximate normal cone’ in Ioffe (2000)) even in spaces with Fréchet
smooth norms; see examples in Borwein and Fitzpatrick (1995).

In the sequel we use the following two propositions involving the prenormal
cone N̂(·;�). The first one can be easily derived from the definition.

PROPOSITION 3.2. Let X1 and X2 be Banach spaces. Then for any nonempty
sets �i ⊂ Xi , i = 1, 2, and any x̄ = (x̄1, x̄2) ∈ �1 × �2 one has

N̂(x̄;�1 × �2) = N̂(x̄;�1) × N̂(x̄2;�2).

The next proposition provides variational descriptions of the prenormal cone
and the set of ε-normals (3.1) useful for economic interpretations of some results
obtained in Section 4. Given a class S of smooth in a certain sense functions on the
Banach space X, we recall that b : X → R is an S-hump function on X if b(·) ∈ S ,
b(x0) �= 0 for some x0 ∈ X, and b(x) = 0 whenever x lies outside a ball in X. In
what follows, we consider the three classes S of smooth functions on X: Fréchet
smooth functions, Lipschitzian and Fréchet smooth functions, and Lipschitzian and
continuously differentiable functions. Note that every Banach space X admitting
an S-bump function from one of these three classes must be Asplund.

PROPOSITION 3.3. Let � be a subset of a Banach spaces X and let x̄ ∈ �. Then
the following hold:

(i) Given ε � 0, we have x∗ ∈ N̂ε(x̄;�) if and only if for any γ > 0 the function

f (x) := 〈x∗, x − x̄〉 − (ε + γ )‖x − x̄‖
attains at x̄ a local maximum relative to �.

(ii) Let X admit an equivalent Fréchet smooth norm. Then for every x∗ ∈
N̂(x̄;�) there is a concave Fréchet smooth function g : X → R such that ∇g(x̄) =
x∗ and g(·) achieves its global maximum relative to � uniquely at x̄.

(iii) Let X admit an S-smooth bump function. Then for every x∗ ∈ N̂(x̄;�)

there is an S-smooth function g : X → R satisfying the conclusions in (ii).
Proof. The proof of (i) follows directly from the definition of ‘lim sup’ in

(3.1). Assertions (ii) and (iii) follow from the proof of Theorem 4.6 in Fabian and
Mordukhovich (1998) for the case of set indicator functions; see also Remarks 4.9
and 4.10 therein. �

Our basic tool in this paper in the following extremal principle of variational
analysis that provides necessary optimality conditions for locally extremal points of
set systems and can be viewed as a variational extension of the classical separation
principle to the case of nonconvex sets. The reader may consult with the survey in
Mordukhovich (2000a) for more references and discussions.

DEFINITION 3.4. Let �1, . . . , �n(n � 2) be nonempty subsets of a Banach
space X. We say that x̄ is a locally extremal point of the set system {�1, . . . , �n}
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if there are sequences {aik} ⊂ X, i = 1, . . . , n, and a neighborhood U of x̄ such
that aik → 0 as k → ∞ and

n⋂
i=1

(�i − aik) ∩ U = ∅ for all large k ∈ N.

We say that {�1, . . . , �n} is an extremal system in X if these sets have at least one
locally extremal point.

An obvious example of the extremal system of two sets is provided by the pair
{x̄, �}, where x̄ is a boundary point of the closed set � ⊂ X. In general, this
geometric concept of extremality covers conventional notions of optimal solutions
to various problems of scalar and vector optimization.

The following fuzzy version of the extremal principle was established Morduk-
hovich and Shao (1996a) as a characterization of Asplund spaces.

THEOREM 3.5. Let X be an Asplund space and let x̄ be a locally extremal point
of the system of closed sets {�1, . . . , �n} in X. Then for any ε > 0 there are
xi ∈ �i ∩ (x̄ + εB) and x∗

i ∈ X∗ such that

x∗
i ∈ N̂(xi;�i) + εB∗ for all i = 1, . . . , n, (3.7)

x∗
1 + · · · + x∗

n = 0, (3.8)

‖x∗
1 ‖ + · · · + ‖x∗

n‖ = 1. (3.9)

Let us discuss conditions under which one can pass to the limit in (3.7)–(3.9)
as ε ↓ 0 and obtain the exact/limiting form of the extremal principle in terms of
the basic normal cone (3.6) in Asplund spaces. To furnish the limiting process, we
need additional compactness assumptions involving Fréchet normals. The follow-
ing general condition was formulated in Mordukhovich and Shao (1996c) although
it has been actually used earlier for similar procedures.

DEFINITION 3.6. Let � ⊂ X be a nonempty subset of the Banach space X and
let x̄ ∈ �. The set � is said to be sequentially normally compact (SNC) at x̄ if for
any sequence (xk, x

∗
k ) satisfying

x∗
k ∈ N̂(xk;�), xk → x̄, and x∗

k

w∗→ 0

one has ‖x∗
k ‖ → 0 as k → ∞.

Sufficient conditions for SNC closed sets are provided by the ‘compactly epi-
Lipschitz’ (CEL) property introduced in Borwein and Strojwas (1985) as an exten-
sion of the epi-Lipschitzian behavior (2.6). Recently efficient characterizations of
the CEL property were obtained in Borwein, Lucet and Mordukhovich (2000) for
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closed convex sets in normed spaces. One of these characterizations says that � is
CEL if and only if its span is a finite-codimensional closed subspace and the relat-
ive interior of � (with respect to its affine hull) is nonempty. In Ioffe (2000), other
characterizations of the CEL property are obtained for general closed sets in terms
of normal cones satisfying certain requirements in appropriate Banach spaces. Note
that both SNC and CEL properties automatically hold in finite dimensions.

Using the SNC property and following the proof of Theorem 3.6 in Morduk-
hovich and Shao (1996b), we arrive at the limiting version of the extremal principle
in terms of our basic normal cone.

COROLLARY 3.7. Let x̄ be a locally extremal point of the closed set system
{�1, . . . , �n} in the Asplund space X. Assume that all but one of the sets �1, . . . ,

�n are sequentially normally compact at x̄. Then there are (x∗
1 , . . . , x

∗
n) �= 0

satisfying (3.8) and

X∗
i ∈ N(x̄;�i) for all i = 1, . . . , n. (3.10)

Due to the normal cone representation (3.4) in the case of convex sets, relations
(3.8)–(3.10) of the extremal principle for n = 2 reduce to the classical separation
property

∃x∗ �= 0 with 〈x∗, x1〉 � 〈x∗, x2〉 for all x1 ∈ �1 and x2 ∈ �2. (3.11)

This means that the extremal principle ensures the separation property for two
convex sets imposing the SNC assumption on one of them instead of the more
restrictive nonempty interior assumption in the classical separation theorem. Note
that Corollary 3.7 provides the above relations only for locally extremal points.
However, the latter requirement holds automatically (or under mild assumptions)
in applications to various optimization problems, calculus rules in nonsmooth ana-
lysis, economic models, etc.; see more discussions in Mordukhovich (2000a). On
the other hand, we can easily check that the separation property (3.11) implies
the local extremality of any point x̄ ∈ �1 ∩ �2 for arbitrary closed sets. Thus,
the result of Corollary 3.7 turns out to be a proper variaitonal extension of the
convex separation theorem to a broad nonconvex setting and, moreover, provides
an improvement of the classical results in the case of convex sets.

We refer the reader to Mordukhovich (2000b) for more general analogs of
the extremal principle in fuzzy/approximate and exact/limiting forms obtained in
terms of abstract prenormal and normal structures under minimal assumptions in
appropriate Banach spaces.

4. Generalized Second Welfare Theorems

This section contains the main results of the paper on necessary conditions for
Pareto optimal allocations of the nonconvex economy E . Based on the extremal
principle, we obtain necessary conditions for Pareto and weak Pareto optima in
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terms of the prenormal and normal cones of Definition 3.1. These conditions are
presented in both approximate and exact forms of the generalized second welfare
theorem involving common nonzero marginal prices for all the preference and
production sets. We discuss various corollaries and interpretations of the main
results and derive new conditions of the price positivity for economies with ordered
commodity spaces.

First let us establish a generalized version of the second welfare theorem in the
approximate form for Pareto and weak Pareto optimal allocations o f E under the
corresponding net demand qualification conditions of Definition 2.3.

THEOREM 4.1. Let (x̄, ȳ) be a Pareto (weak Pareto) local optima allocation of
the economy E with the Asplund commodity space E. Assume that the net demand
qualification condition (resp. net demand weak qualification condition) is satisfied
at (x̄, ȳ). Then for every ε > 0 there are (x, y,w) ∈ ∏n

i=1 clPi(x̄) × ∏m
j=1 clSj ×

clW and p∗ ∈ E∗\{0} such that

−p∗ ∈ N̂(xi; clPi(x̄)) + εB∗ with xi ∈ x̄i + (ε/2)B for all i = 1, . . . , n,
(4.1)

p∗ ∈ N̂(yj ; clSj ) + εB∗ with yj ∈ ȳj + (ε/2)B for all j = 1, . . . , m, (4.2)

p∗ ∈ N̂(w; clW) + εB∗ with w ∈ w̄ + (ε/2)B, (4.3)

1 − ε

2
√
n + m + 1

� ‖p∗‖ � 1 + ε

2
√
n + m + 1

, (4.4)

where w̄ is defined in (2.2).
Proof. We prove the theorem in a parallel way for Pareto and weak Pareto

optimal allocations (x̄, ȳ). Consider the product space X := En+m+1 equipped
with the norm

‖(v1, . . . , vn+m+1)‖X := [‖v1‖2 + · · · + ‖vn+m+1‖2]1/2. (4.5)

Since E is Asplund, the product space X is Asplund as well; see, e.g., Phelps
(1993). Taking a number ε > 0 for which the NDQ condition (resp. the NDWQ
condition) holds with the corresponding sequence {ek} in (2.5) and (2.4), we define
the two closed sets in X as follows:

�1 :=
n∏

i=1

[clPi(x̄) ∩ (x̄i + εB)]

×
m∏

j=1

[clSj ∩ (ȳj + εB)] × [clW ∩ (w̄ + εB)], (4.6)
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�2 :=

(x, y,w) ∈ X

∣∣∣∣
n∑

i=1

xi −
m∑

j=1

yj − w = 0


 . (4.7)

Let us show that (x̄, ȳ, w̄) is a locally extremal point of the set system {�1,�2} in
(4.6) and (4.7). It follows directly from Definitions 2.1 and 2.2 that (x̄, ȳ, w̄) ∈
�1 ∩ �2. To justify the local extremality of (x̄, ȳ, w̄) it is sufficient to find a
neighborhood U of this point and a sequence {ak} ⊂ X such that ak → 0 as
k → ∞ and

(�1 − ak) ∩ �2 ∩ U = ∅ for all large k ∈ N (4.8)

under the corresponding qualification condition from Definition 2.3. To proceed,
we take a neighborhood O ∈ En+m of the Pareto (weak Pareto) optimal allocation
(x̄, ȳ) and a sequence {ek} ⊂ E converging to zero for which either (2.4) or (2.5)
is satisfied. In both cases we put U := O × R ⊂ X and ak := (0, . . . , 0, ek) ∈ X

and show that (4.8) holds for the same k ∈ N as in (2.4) and (2.5). Assuming the
contrary, we find zk ∈ �1 with zk −ak ∈ �2. Due to the structure of (4.6) and (4.7)
and the construction of ak and U , this implies the existence of (xk, yk, wk) with
(xk, yk) ∈ O,

xik ∈ clPi(x̄) ∩ (x̄i + εB), i = 1, . . . , n;
yjk ∈ clSj ∩ (ȳj + εB), j = 1, . . . , m,

wk ∈ clW ∩ (w̄ + εB), and
n∑

i=1

xik −
m∑

j=1

yj − k − wk + ek = 0.

The latter means, due to (2.3), that 0 ∈ �ε + ek . Consequently, the NDWQ con-
dition ensures that the right-hand side set in (2.4) contains the origin while the
NDQ condition ensures that the origin belongs to the right-hand side set in (2.5).
This contradicts the weak Pareto local optimality of (x̄, ȳ) in the first case and the
Pareto local optimality of this allocation in the second case. Thus we have justified
(4.8) and established the local extremality of (x̄, ȳ, w̄) for the system of closed sets
{�1,�2} defined in (4.6) and (4.7) in the Asplund space X.

Now we can apply the fuzzy version of the extremal principle to this system of
two sets. According to Theorem 3.5, for every ε > 0 there are z = (x1, . . . , xn,
y1, . . . , ym,w) ∈ �1, z̄ ∈ �2,

z∗ ∈ N̂(z;�1), and z̄∗ ∈ N̂(z̃;�2) (4.9)

such that

xi ∈ x̄i + (ε/2)B, i = 1, . . . , n;
yj ∈ ȳj + (ε/2)B, j = 1, . . . , m; (4.10)

w ∈ w̄ + (ε/2)B,
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(1 − ε)/2 � ‖z̃∗‖ � (1 + ε)/2, and ‖z∗ + z̃∗‖ � ε/2. (4.11)

Observe that the set �2 in (4.7) is a linear subspace separated in all the variables
(xi, yj , w). Thus N̂(z̃;�2) is a subspace orthogonal to �2, and z̃∗ = (p∗, . . . , p∗,
−p∗, . . . ,−p∗) in (4.9), where the ‘minus terms’ start with the (n+ 1)st position.
It follows from (4.5) and (4.11) that

(1 − ε)/2 �
√
n + m + 1‖p∗‖ � (1 + ε)/2. (4.12)

Then we conclude from (4.9) and the last estimate in (4.111) that

−z̃∗ = (−p∗, . . . ,−p∗, p∗, . . . , p∗) ∈ N̂(z;�1) + εB∗. (4.13)

Now we use Proposition 3.2 for the product set �1 and observe that by (4.10) all
the components (xi, yj , w) of the point z in (4.13) belong to the interiors of the
corresponding neighborhoods in (4.6); hence these neighborhoods can be ignored
in the calculation of N̂(z;�1). Finally combining (4.10), (4.12), and (4.13), we
arrive at relationships (4.1)–(4.4) and complete the proof of the theorem. �

Observe that, in contrast to the fuzzy extremal principle of Theorem 3.5 for
the general extremal system of closed sets, Theorem 4.1 ensures the existence of a
common dual element p∗ ∈ E∗\{0} for all the sets involved in (4.1)–(4.3), instead
of different elements x∗

i in (3.7)–(3.9). This common element, which can be inter-
preted as an approximate marginal price for all the preference and production sets
near Pareto optimal allocations, corresponds to the very essence of the classical
second welfare theorem ensuring the equality of marginal rates of substitution
for consumers and firms. Note that such a specification of the general extremal
principle in the economic model under consideration is proved to be possible due
to the specific structure of sets (4.6) and (4.7) in the extremal system, especially
due to the separated variables in (4.7).

the results of Theorem 4.1 can be compared with a recent ‘viscous’ version of
the generalized second welfare theorem established in Jofré (2000) for the case
of Pareto optimal allocations in nonconvex economies with the ‘market clear’
condition W = {ω}. The main result of the latter paper is expressed in terms of
an abstract subdifferential for Lipschitz continuous functions on a Banach space
under certain requirements. Observe that not all of these requirements (particularly
the subdifferential sum rule) are satisfied for the Fréchet subdifferential in Asplund
spaces that generates the prenormal cone N̂(·;�) through the distance function to
�, Thus, our Theorem 4.1 and Theorem 3 of Jofré (2000) are independent. The
proof of the latter result is based on a subdifferential condition for boundary points
of the sum of closed sets from Borwein and Jofré (1998), which is an approxim-
ate version of the nonconvex separation property established in Jofré and Rivera
(2000) in finite dimensions as an extension of the unpublished result by Cornet and
Rockafellar (1989). An abstract version of Theorem 4.1 that covers the mentioned
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result of Jofré is obtained in Mordukhovich (2000b) by using a more general fuzzy
extremal principle.

Let us present some corollaries of Theorem 4.1 taking into account special de-
scriptions of prenormal elements given in Section 3. First we consider economies
with convex preference and production sets. In this c ase relations (4.1) and (4.2)
provide, respectively, global minimization (maximization) of the perturbed con-
sumer expenditures (firm profits) over the corresponding preference (production)
sets.

COROLLARY 4.2. In addition to the assumptions of Theorem 4.1, we suppose
that all the sets Pi(x̄), i = 1, . . . , n, and Sj , j = 1, . . . , m, are convex. Then for
every ε > 0 there are (x, y,w) ∈ ∏n

i=1[clPi(x̄) ∩ (x̄i + (ε/2)B)] × ∏m
j=1[clSj ∩

(ȳj + (ε/2)B] × clW and p∗ ∈ E∗\{0} such that one has (4.3), (4.4), and

〈p∗, ui − xi〉 � −ε‖ui − xi‖ for all ui ∈ clPi(x̄), i = 1, . . . , n, (4.14)

〈p∗, vj − yj 〉 � ε‖vj − yj‖for all vj ∈ clSj , j = 1, . . . , m. (4.15)

Proof. It follows directly from (4.10, (4.2), and the representation (3.5) of
ε-normals to convex sets. �

Next we consider a general case of nonconvex economies and use the variational
descriptions of Fréchet normals and ε-normals from Proposition 3.3. In this way
we obtain two nonconvex counterparts of Corollary 4.2. The first one provides
local analogs of relations (4.14) and (4.15) for nonconvex economies, while the
second statement ensures the existence of smooth functions whose rate of change
at ε-optimal allocations approximately equals to the marginal price p∗ and which
achieve their global minimum (maximum) over the preference (production) sets
at the ε-optimal allocations. Such functions can be interpreted as approximate
nonlinear prices that support a perturbed convex-type equilibrium in nonconvex
models.

COROLLARY 4.3. Under the assumptions of Theorem 4.1 the following hold:
(i) Given any ε > 0 and any γ > 0, there are (x, y,w) ∈ ∏n

i=1[clPi(x̄)∩ (x̄i +
(ε/2)B] × ∏m

j=1[clSj ∩ (ȳj + (ε/2)B)] × clW , p∗ ∈ E∗\{0}, and η > 0 such that
one has (4.3), (4.4), and

〈p∗, ui − xi〉 � −(ε + γ )‖ui − xi‖
for all ui ∈ clPi(x̄) ∩ (xi + ηB), i = 1, . . . , n,

〈p∗, vj − yj 〉 � (ε + γ )‖vj − yj‖
for all vj ∈ clSj ∩ (yj + ηB), j = 1, . . . , m.

(ii) Let in addition E admit an S-smooth bump function from the classes S con-
sidered in Proposition 3.3. Then for every ε > 0 there are (x, y,w) ∈ ∏n

i=1[clPi(x̄)
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∩(x̄i + (ε/2)B)]×∏m
j=1[clSj ∩ (ȳj + (ε/2)B)]× clW and p∗ ∈ E∗\{0} as well as

S-smooth functions gi : E → R(i = 1, . . . , n) and hj : E → R(j = 1, . . . , m)

such that one has (4.3), (4.4), and

‖∇gi(xi) − p∗‖ � ε, i = 1, . . . , n; ‖∇h(yj ) − p∗‖ � ε, j = 1, . . . , m,

where gi achieves its global minimum over clPi(x̄) uniquely at xi for all i =
1, . . . , n, and hj achieves its global maximum over clSj uniquely at yj for all
j = 1, ldots,m. Moreover, we can choose gi and hj to be convex and concave
respectively if E admits an equivalent Fréchet smooth norm.

Proof. To prove (i), we first observe that

N̂(x̄;�) + εB∗ ⊂ N̂ε(x̄;�), ε � 0,

for any set � and then use Proposition 3.3(i) in (4.1) and (4.2). All the assertions in
(ii) follow from the assertions (ii) and (iii) of Proposition 3.3 applied to (4.1) and
(4.2). �

Now let us derive necessary optimality conditions for Pareto and weak Pareto
optimal allocations of E in the exact form of the generalized second welfare the-
orem. To do it, we need to impose additional compactness assumptions that allow
us to pass to the limit in the relations of Theorem 4.1. It happens that the sequen-
tial normal compactness of one among the preference, production, or net demand
constraint sets is sufficient for this purpose.

THEOREM 4.4. Let (x̄, ȳ) be a Pareto (resp. weak Pareto) locally optimal alloc-
ation of the economy E satisfying the corresponding assumptions of Theorem 4.1
with w̄ defined in (2.2). Assume in addition that either one of th4e sets clPi(x̄),
i = 1, . . . , n, or clSj , j = 1, . . . , m, or clW is sequentially normally compact at
x̄i , ȳj , and w̄ respectively. Then there is a nonzero price p∗ ∈ E∗ satisfying

−p∗ ∈ N(x̄i; clPi(x̄)) for all i = 1, . . . , n, (4.16)

p∗ ∈ N(ȳj ; clSj ) for all j = 1, . . . , m, (4.17)

p∗ ∈ N(w̄; clW). (4.18)

Proof. Let us prove this theorem by passing to the limit in the relations of
Theorem 4.1. Pick an arbitrary sequence εk ↓ 0 as k → ∞ and, according to
the latter result, find sequences (xk, yk, wk) ∈ ∏n

i=1 clPi(x̄) × ∏m
j=1 clSJ × clW

and p∗
k ∈ E∗ satisfying (4.1)–(4.4) with ε = εk for each k ∈ N. Obviously

(xk, yk, wk) → (x̄, ȳ, w̄) as k → ∞. Since E is Asplund and p∗
k are uniformly

bounded by (4.4), there is p∗ ∈ E∗ such that the sequence {p∗
k } converges to

p∗ in the weak-star topology of E∗. Now passing to the limit in (4.1)–(4.3) as
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k → ∞ and taking into account the representation (3.6) of the basic normal cone
in Asplund spaces, we arrive at all the relations (4.16)–(4.18).

It remains to prove that p∗ �= 0 if one of the sets clPi(x̄), clSj , and clW is
sequentially normally compact at the corresponding point. On the contrary, let
p∗ = 0 and assume for definiteness that the set clW is sequentially normally
compact at w̄. Then by (4.3) there is a sequence of e∗

k ∈ E∗ such that

p∗
k − εke

∗
k ∈ N̂(wk; clW) with ‖e∗

k‖ = 1 for all k ∈ N. (4.19)

Obviously p∗
k − εke

∗
k

w∗→ 0 as k → ∞. By Definition 3.6 of SNC sets, we conclude
from (4.19) that ‖p∗

k − εke
∗
k‖ → 0 and hence ‖p∗

k‖ → 0 as k → ∞. The latter
contradicts the left-hand inequality in (4.4) for p∗

k . Thus p∗ �= 0, which completes
the proof of the theorem. �

We can see that Theorem 4.4 requires the sequential normal compactness of
only one among the preference, production, or net demand constraint sets while the
limiting extremal principle of Corollary 3.7 imposes the SNC assumption on all but
one among these sets. Such an improvement of the general result in the framework
of the economic model E becomes possible mostly due to the separated structure
of the set (4.7) involved in the extremal system.

Let us present some corollaries of Theorem 4.4 and discuss its relations with
other results in this direction. First we consider a special case of E , where the net
demand constraint set W admits the representation

W = ω + 5 with some ω ∈ clW. (4.20)

When 5 = −E+ for ordered commodity spaces, representation (4.20) corresponds
to the so-called implicit free disposal of commodities. We consider a more general
case of 5 being an arbitrary convex cone in E and show that (4.18) implies in this
case the following complementary slackness condition, which economically can be
interpreted as the zero value of excess demand at the marginal price.

COROLLARY 4.5. In addition to the assumptions of Theorem 4.4, we suppose
that W is given as (4.20), where 5 is an nonempty convex subcone of E. Then
there is a nonzero price p∗ ∈ E∗ satisfying (4.16), (4.17), and〈

p∗,
n∑

i=1

x̄i −
m∑

j=1

ȳj − ω

〉
= 0. (4.21)

Proof. To justify (4.21), we observe that

〈p∗, w̄ − ω〉 � 〈p∗, w − ω〉 for all w ∈ clW (4.22)

due to (4.18), (3.4), and (4.20). Hence 〈p∗, w̄ − ω〉 � 0. On the other hand, taking
2(w̄ − ω) ∈ W − ω = 5 from the cone 5, we get by (4.22) that 〈p∗, w̄ − ω〉 � 0,
i.e., (4.21) holds. �
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In the case of economies with convex preference and production sets, relations
(4.16) and (4.17) of Theorem 4.4 reduce to the classical consumer expenditure min-
imization and firm profit maximization conditions of the second fundamental the-
orem of welfare economics in Arrow (1951) and Debreu (1951). The corresponding
corollary of Theorem 4.4 is formulated as follows.

COROLLARY 4.6. In addition to the assumptions of Theorem 4.4, we suppose
that all the sets Pi(x̄), i = 1, . . . , n, and Sj , j = 1, . . . , m, are convex. Then there
is a nonzero price p∗ ∈ E∗ satisfying (4.18) and such that

x̄i minimizes 〈p∗, xi〉 over xi ∈ clPi(x̄i) ∀i = 1, . . . , n, (4.23)

ȳj maximizes 〈p∗, yj 〉 over yj ∈ clSj ∀j = 1, . . . , m, (4.24)

Proof. This follows directly from (4.16) and (4.17) due to the normal cone
representation (3.4) for convex sets. �

We have from Proposition 2.4 and the discussion after Definition 3.6 that all
the assumptions of Theorem 4.4 automatically hold for weak Pareto (resp. Pareto)
optimal allocations if one of the sets Pi(x̄), or Sj , or W (resp. clPi(x̄)) is epi-
Lipschitzian at the reference points, which corresponds to their nonempty interiors
in the case of convex sets. for convex economies with finite-dimensional commod-
ity spaces, the qualification and normal compactness conditions of Theorem 4.4
hold with no interiority assumptions; cf. Debreu (1959) and Cornet (1986). So
Corollary 4.6 provides a proper generalization of the classical results of convex
welfare economies.

For nonconvex economies E , Theorem 4.4 improves the results of Khan (1999)
and Cornet (1990) obtained in terms of the normal cone (3.3) for W = {ω} −
R

n+ respectively. Note that, in the nonconvex case, relations (4.16) and (4.17) give
first-order necessary conditions for consumer’s expenditure minimization (4.23)
and firm’s profit maximization (4.24). Relations of this type are called marginal
pricing quasi-equilibrium formalized in terms of the corresponding normal cone;
cf. Guesnerie (1975) and Cornet (1990).

A version of Theorem 4.4 for nonconvex ‘markets clear’ economies is presented
in Jofré (2000) under the CEL assumption on one of the preference or production
sets and an additional robustness (closed graph) subdifferential requirement that
holds when E is weakly compactly generated (hence admits a Feéchet smooth
renorm) in the framework of Theorem 4.4. Jofré’s result also holds in general
Banach spaces in terms of bigger Ioffe’s and Clarke’s normal cones (or the corres-
ponding subdifferentials of the distance function); see the discussions in Section
3. The latter result improves a generalized version of the second welfare theorem
obtained in Bonnisseau and Cornet (1988) in terms of Clarke’s normal cone under
the epi-Lipschitzian property of one of the sets involved. Other extensions of the
second welfare theorem for a general economic model with private and public
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goods are given in Flåm and Jourani (2000) through an abstract subdifferential
satisfying full calculus, robustness, and compactness requirements close the ones
in to Jofré (2000). These requirements basically restrict the class of subdifferentials
and normal cones to those listed above, and they do not cover the general frame-
work of Theorem 4.4. More relaxed requirements are imposed in Mordukhovich
(2000b), where the reader can find an abstract version of Theorem 4.4 with further
discussions.

Next let us consider a special case of our economic model E when the commod-
ity space E is an ordered Banach space with the closed positive cone E+ := {e ∈
E|e � 0}. The associate closed positive cone E∗+ of the dual space E∗ admits the
representation

E∗
+ := {e∗ ∈ E∗|e∗ � 0} = {e∗ ∈ E∗|〈e∗, e〉 � 0 for all e ∈ E+}, (4.25)

where the order on E∗ is induced by the given one � on E. The last theorem of this
paper presents natural conditions ensuring the positivity of marginal prices in the
framework of Theorem 4.4. The proof is based on the following proposition that
exploits specific features of the basic normal cone (3.2) in Banach spaces.

PROPOSITION 4.7. Let E be an ordered Banach space and � ⊂ E a nonempty
closed subset satisfying the condition

� − E+ ⊂ �. (4.26)

Then one has

N(ē;�) ⊂ E∗
+ for every ē ∈ �. (4.27)

Proof. Let e∗ ∈ N(ē;�), where � satisfies (4.26). By (3.2) we find sequences

εk ↓ 0, ek
�→ ē, and e∗

k

w∗→ e∗ as k → ∞ with e∗
k ∈ N̂εk (ek;�) for all k ∈ N. Due to

(4.26) and the obvious monotonicity property

N̂ε(e;�1) ⊂ N̂ε(e;�) for any e ∈ �2 ⊂ �1 and ε � 0,

we conclude that e∗
k ∈ N̂εk (ek;� − E+) for all k ∈ N. Fix k ∈ N and take an

arbitrary γ > 0. Using the definition of ε-normals in (3.1), we find ηk > 0 so that

〈e∗
k , e − ek〉 � (εk + γ )‖e − ek‖ for all e ∈ (ek + ηB) ∩ (� − E+). (4.28)

It is easy to see that ek − ηku ∈ (ek + ηkB) ∩ (� − E+) for any u ∈ E+ ∩ B.
Substituting e := ek − ηku into (4.28), we get

〈e∗
k ,−u〉 � (εk + γ )‖u‖ � εk + γ for all u ∈ E+ ∩ Bandk ∈ N.

Passing to the limit in the latter inequality and taking into account that e∗
k

w∗→ e∗ as
k → ∞, we arrive at

〈e∗,−u〉 � γ for all u ∈ E+ ∩ B,
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which implies e∗ ∈ E∗+ since γ > 0 was chosen arbitrary. This completes the proof
of the proposition. �

It is proved in Jofré and Rivera (1998), using a finite-dimensional technique,
that condition (4.26) held for each x̄ ∈ bd� is necessary and sufficient for the
fulfillment of property (4.27) for closed sets in R

n. Note that (4.26) is related to
free-disposal type conditions in economic models. The following theorem contains
assumptions in this line imposed on either preference, or production, or net demand
constraint sets that ensure the price positivity p∗ ∈ E∗+\{0} in our generalized
second welfare theorem in the framework or ordered Asplund commodity spaces.

THEOREM 4.8. Let (x̄, ȳ) be a Pareto (resp. weak Pareto) locally optimal alloc-
ation of the economy E . In addition to the corresponding assumptions of Theorem
4.4, we suppose that E is an ordered space and one of the following conditions
holds:

(a) There is i ∈ {1, . . . , n} such that the i-th consumer satisfies the desirability
assumption at x̄, i.e.,

clPi(x̄) + E+ ⊂ clPi(x̄)

(b) There is j ∈ {1, . . . , m} such that the j -th firm satisfies the free-disposal
assumption, i.e.,

clSj − E+ ⊂ clSj .

(c) The net demand constraint set W exhibits implicit free disposal of commod-
ities, i.e.,

clW − E+ ⊂ clW.

Then there is a positive marginal price p∗ ∈ E∗+\{0} satisfying (4.16)–(4.18).
Proof. The marginal price positivity p∗ ∈ E∗+ in cases (b) and (c) follows

directly from Proposition 4.7 due to (4.17) and (4.18). Case (a) reduces to the same
proposition due to (4.16) and the property

N(ē;�) = −N(−ē;�) for every � ⊂ E and ē ∈ �

valid in any Banach space. To check this property, it is sufficient to use (3.2) and
formula (3.1) for the set of ε-normals. �

Observe that each of the conditions in (a)–(c) implies the epi-Lipschitzian prop-
erty of the corresponding sets clPi(x̄), clSj , and clW provided that intE+ �= ∅.
Due to the discussions above, the latter assumption ensures also the fulfillment of
the qualification and normal compactness conditions of Theorem 4.4 and thus the
existence of a positive price p∗ ∈ E+\{0} in Theorem 4.8.



PARETO OPTIMALITY IN NONCONVEX ECONOMIES 345

Note that Theorem 4.8 substantially improves, in the Asplund space setting, the
main result in Khan (1991) formalized in terms of a bigger Ioffe’s normal cone,
where W = ω − E+, both conditions (a) and (b) hold for all i = 1, . . . , n and
j = 1, . . . , m respectively, and every preference and production set is assumed to
be epi-Lipschitzian. Moreover, we do not need a lattice structure of the commod-
ity space, reflexive preference relations, and strong Pareto optimum requirements
imposed in that paper.
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